Modeling Tumor-Associated Edema in Gliomas during Anti-Angiogenic Therapy and Its Impact on Imageable Tumor
نویسندگان
چکیده
Glioblastoma, the most aggressive form of primary brain tumor, is predominantly assessed with gadolinium-enhanced T1-weighted (T1Gd) and T2-weighted magnetic resonance imaging (MRI). Pixel intensity enhancement on the T1Gd image is understood to correspond to the gadolinium contrast agent leaking from the tumor-induced neovasculature, while hyperintensity on the T2/FLAIR images corresponds with edema and infiltrated tumor cells. None of these modalities directly show tumor cells; rather, they capture abnormalities in the microenvironment caused by the presence of tumor cells. Thus, assessing disease response after treatments impacting the microenvironment remains challenging through the obscuring lens of MR imaging. Anti-angiogenic therapies have been used in the treatment of gliomas with spurious results ranging from no apparent response to significant imaging improvement with the potential for extremely diffuse patterns of tumor recurrence on imaging and autopsy. Anti-angiogenic treatment normalizes the vasculature, effectively decreasing vessel permeability and thus reducing tumor-induced edema, drastically altering T2-weighted MRI. We extend a previously developed mathematical model of glioma growth to explicitly incorporate edema formation allowing us to directly characterize and potentially predict the effects of anti-angiogenics on imageable tumor growth. A comparison of simulated glioma growth and imaging enhancement with and without bevacizumab supports the current understanding that anti-angiogenic treatment can serve as a surrogate for steroids and the clinically driven hypothesis that anti-angiogenic treatment may not have any significant effect on the growth dynamics of the overall tumor cell populations. However, the simulations do illustrate a potentially large impact on the level of edematous extracellular fluid, and thus on what would be imageable on T2/FLAIR MR. Additionally, by evaluating virtual tumors with varying growth kinetics, we see tumors with lower proliferation rates will have the most reduction in swelling from such treatments.
منابع مشابه
Anti-EGFR function of EFEMP1 in glioma cells and patient prognosis
EGFR is one of the key oncogenes subjected to targeted therapy for several cancers, as it is known to be amplified and/or mutated in up to 40% of malignant gliomas. EFEMP1, a fibulin-like extracellular protein, exerts both tumor suppressive and oncogenic effects in various cancers and glioma cell models. Although EFEMP1's anti-cancer activity has most commonly been attributed to its anti-angiog...
متن کاملQuantification of Mean Vessel Density in Retinoblastoma and Its Correlation with Local Tumor Invasion and Patients Survival
Background and Objectives: Retinoblastoma is the most common intraocular pediatric malignancy. Angiogenic factor expression such as VEGF (vascular endothelial growth factor) in retinoblastoma can be confirmatory angiogenic potential of this tumor. This study was performed to determine the role of angiogenesis in local invasion of retinoblastoma and its correlation with patients’ sur...
متن کاملExpression of Prostate-Specific Membrane Antigen (PSMA) in Brain Glioma and its Correlation with Tumor Grade
Background & Objective Angiogenesis is an essential component of tumor growth. Expression of PSMA on the neo-vasculature of many solid tumors, including glioblastoma multi-form, has been determined. The pattern of expression suggests that PSMA may play a functional role in angiogenesis. Methods: expression of PSMA in dif...
متن کاملChanging Roles of Matrix Metalloproteases and Their Inhibitors, TIMPs, During Tumor Progression and Angiogenesis
Inhibition of matrix-metalloproteinases (MMPs) by tissue inhibitors of metalloproteinases (TIMPs) has been shown in vivo to decrease metastasis and tumor-associated angiogenesis. Our laboratory is interested in understanding the role of these proteins at the pericellular microenvironment of tumor and endothelial cells. Secretion of MMPs by tumor cells enables the migration, invasion and metasta...
متن کاملO 25: Immunotherapy for Brain Tumor
In 1890, Coley observed that cancer patients who developed infections had smaller tumors. From this, he developed Coley’s toxin and treated tumors with injections of infectious materials. In 1960s, Mahaley used monoclonal antibodies to treat central nervous system(CNS) tumors, that research and clinical investigations in brain tumor immunotherapy became a serious undertaking. ...
متن کامل